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ABSTRACT 

In this investigation, the free vibration analysis of laminated composite rectangular plates 

with general boundary conditions is performed with a modified Fourier series method. 

Vibration characteristics of the plates have been obtained via an energy function represented 

in the general coordinates, in which the displacement and rotation in each direction is 

described as an improved form of double Fourier cosine series and several closed-form 

auxiliary functions to eliminate any possible jumps and boundary discontinuities. All the 

expansion coefficients are then treated as the generalized coordinates and determined by 

Rayleigh-Ritz method. The convergence and reliability of the current method are verified by 

comparing with the results in the literature and those of Finite Element Analysis. The effects 

of boundary conditions and geometric parameters on the frequencies are discussed as well. 

Finally, numerous new results for laminated composite rectangular plates with different 

geometric parameters are presented for various boundary conditions, which may serve as 

benchmark solutions for future research. 

 

1 INTRODUCTION 

 

Laminated composite rectangular plates are novel structural components widely used in 

various engineering fields, such as acoustic, aircraft and automobile manufacturing1, 2. And in 

some case they are unavoidably suffered from dynamic loads, which may lead to fatigue damage 

and severe reductions of the structures3, 4. Therefore, it is essential to understand the free vibration 

characteristics of laminated plate structures5. 
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To deal with the vibration problem of laminated plates, a lot of efficient methods have been 

devoted to the study for many years, such as TSDT6, Ritz method7, wave propagation approach8, 

meshfree method9, etc.  

To improve the accuracy and convergence of the aforementioned methods, a modified Fourier 

series solution is proposed for the free vibration of laminated composite plates with general 

boundary conditions and linear Winkler and Pasternak foundation. Displacement and rotation in 

each direction is described as an improved form of double Fourier cosine series and several closed-

form auxiliary functions, and exact solutions are obtained by Rayleigh-Ritz method. The reliability 

of the proposed method is demonstrated by comparing with the results in the literature and those 

of Finite Element Analysis. On this basis, numerous new results for laminated composite plates 

with different geometric parameters and angle-plies are presented. In addition, the effects of 

boundary conditions, geometric parameters and Winkler and Pasternak foundation parameters on 

the frequencies are also illustrated.  

 

2 THEORETICAL FORMULATION  

 

2.1 Model Description 

 

A laminated composite rectangular plate with length a, width b, and total thickness of h is 

depicted in Fig 1. To describe the plate clearly, we introduce the following Cartesian coordinate 

system: the displacements of the plate in the x, y and z directions are denoted by u, v and w, 

respectively. The laminated rectangular plate is assumed to be N composite layers. The frequently 

encountered boundary conditions are realized by three independent springs, which is translational, 

rotational and torsional springs. By assigning the stiffness of the springs at proper values can be 

equal to imposing different boundary forces on the mid-surface of the plate. 
xK , 

yK , 
uk ,  

vk  and 

wk  are used to indicate the stiffness of the springs at x=0, a and y=0, b, respectively10. For the 

elastic foundation, Kw and Ks are defined as linear Winkler and Pasternak foundation parameters. 

 
 

Fig. 1 – Boundary restraints, Winkler and Pasternak foundation of laminated composite 

rectangular plate. 

 

2.2 Stress-Strain Relations and Stress Resultants 

 

Based on the plate model presented above and the first-order shear deformation theory11, 12,  

the displacement fields of laminated composite plates are: 



( , , , ) ( , , ) ( , , )

( , , , ) ( , , ) ( , , )

( , , , ) ( , , )

x

y

U x y z t u x y t z x y t

V x y z t v x y t z x y t

W x y z t w x y t





 

 



                                              (1) 

 

where u, v and w are the middle surface displacements of the plate and t is the time variable. x  

and 
y  represent the rotations of transverse respect to y-axes and x-axes, respectively. For the 

laminated composite plates, the strains-displacement can be defined as: 
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where the normal and shear strains in the x, y and z directions are denoted by x  
y  and 

xy , 

respectively. xz  and 
yz  are the transverse shear strains, which are constants through the 

thickness. And the matrix can be simplified to the following forms: 
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According to Hooke’s law13, the stress-strain relations of the plates are written as: 
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By carrying the integration of stresses over the plate thickness, the force and moment resultants 

are obtained as 
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where xN , yN  and xyN  denote the normal and shear force resultants, respectively. xM , yM  and 

xyM  are the bending and twisting moment resultants. xQ  and yQ  are the transverse shear force 

resultants. Performing the integration operation in Equations (6)-(8) yields: 
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Here, the shear correction factor is denoted as  . The extensional stiffness coefficients 
ijA , 

extensional-bending stiffness coefficients 
ijB  and bending stiffness coefficients 

ijD  can be 

expressed as: 
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2.3  Energy Functions 

 

In this section, the modified Fourier series method of Rayleigh-Ritz method is presented. In 

the Rayleigh-Ritz method, a displacement associated with undetermined coefficients is assumed 

and substituted into the Lagrangian energy function14. Then by minimizing the total expression 

and making them equal to zero, the coefficients in the displacement are determined. Finally, a 

series of equations can be summed up in matrix form as a standard characteristic equation. And 

the desired frequencies and modes can be obtained easily by solving the standard characteristic 

equation. 

For free vibration analysis, the Lagrangian energy function of the laminated composite plates 

can be written as: 
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The strain energy Us and kinetic energy T of the plates during vibration are given by: 
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The work done by the external forces (qx, qy, qz) and external couples (mx, my) in the middle 

surface is: 
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And the deformation strain energy in the boundary springs can be defined as: 
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Subsequently, the strain energy based on the Winkler and Pasternak foundations is: 
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2.4  Governing Equations and Admissible Displacement Functions 
 

The governing equations for the plates can be obtained by applying Hamilton’s principle. 

Regardless of boundary conditions, each displacement and rotation field of the laminated plates 

can be described by the two-dimensional modified Fourier technique: 
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where /m m a   and /n n b  . M and N are the truncation numbers of variables x and y. mnA ，

mnB ， mnC ， mnD  and mnE  are the Fourier expansion coefficients of the cosine Fourier series. n

la , 
m

lb , n

lc , m

ld , n

le , m

lf , n

lg , m

lh , n

li  and m

lj  are the corresponding supplement coefficients. The 

auxiliary polynomial functions ( )a

l x  and ( )b

l y  are expressed as follows: 
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It can be verified that, 
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Alternately, all the expansion coefficients in Equations (19)-(23) can be treated equally and 

independently as the generalized coordinates and solved from the Rayleigh-Ritz method. The 

vibration characteristic equation can be summed up in matrix form: 
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where K and M denote the stiffness matrix and mass matrix of the plate, respectively. 

3 NUMERICAL RESULTS AND DISCUSSION 
 

In this part, numerical results for the free vibration of laminated plates with various geometric 

parameters and general conditions are presented. Firstly, the reliability and accuracy of the 

proposed method are validated by comparing with those results in the literature and those of Finite 

Element Analysis. Secondly, some numerical results for laminated plates with different geometric 

parameters and angle-plies are obtained for various boundary conditions. Finally, the effects of 

linear Winkler and Pasternak foundation parameters on frequencies are also illustrated.  

A symmetrically laminated plate with completely free boundary conditions is considered to 

demonstrate the accuracy of modified Fourier method. The material properties and geometric 

parameters of the plate are given as follows: / 3 / 2a b  , / 0.1h a  , 1 2/ 20E E  , 12 0.25  , 

12 20.5G E , 13 20.5G E , 23 20.33G E  and the truncation number is M = N = 11, 12 and 13. In 

Table 1, the first six frequency parameters 
2= /a h D   for the plate with angle-ply [30°/-30°/-

30°/30°] are examined. It can be seen that the solutions are in agreement with the results obtained 

from FEM.  

 

Table 1 - Comparison of the first six frequency parameters Ω for a completely free laminated 

plate. 

 

Mode 
11 11  12 12  13 13  

Present FEM Present FEM Present FEM 

1 0.7497 0.7499 0.7140 0.7141 0.7052 0.7051 

2 1.0033 1.0034 0.9563 0.9565 0.9473 0.9472 

3 2.2191 2.2191 2.1951 2.1952 2.1472 2.1472 

4 2.8798 2.8797 2.7302 2.7305 2.6934 2.6935 

5 3.7860 3.7857 4.7628 3.7630 3.6789 3.6792 

6 4.2841 4.2837 4.2405 4.2406 4.1870 4.1875 

 

Table 2 compares the lowest five frequency parameters with CCCC and SCSC boundary 

conditions. The geometric and materials properties of the plate are: / 1/ 2a b  , 1 2/ 20E E  , 

2 3= 10GPaE E  , 12 13 0.25   , 12 13 23= = 5GPaG G G   23 0.3  . Three different thickness-

length ratios, /h a = 0.1, 0.2 and 0.3, corresponding to the laminated plates, are considered. The 

solutions by the three-dimensional elasticity method by Jin et al.15 are provided for the 

comparisons. The maximum discrepancy does not exceed 0.048%, which is acceptable. It can be 

seen that the augmentation of the thickness-length ratio results in the decrease of the frequency 

parameters. 



Table 2 - The lowest five frequency parameters Ω for laminated plate with different conditions 

and thickness-leigh ratios. 

 

h/a Method 
Mode Number 

1 2 3 4 5 

CCCC boundary condition 

0.1 
Present 12.786 13.251 14.464 16.687 19.954 

Ref. 15 12.767 13.243 14.451 16.647 19.938 

0.2 
Present 7.5301 8.0875 9.3814 10.203 11.426 

Ref. 15 7.5325 8.0882 9.3822 10.210 11.435 

0.3 
Present 5.2978 5.8816 6.8091 7.0854 8.7982 

Ref. 15 5.2982 5.8807 6.8086 7.0848 8.7975 

SCSC boundary condition 

0.1 
Present 8.3205 8.3316 9.1983 11.075 14.015 

Ref. 15 8.3199 8.3304 9.1970 11.061 13.998 

0.2 
Present 4.1647 6.1715 6.9588 8.3296 8.5426 

Ref. 15 4.1652 6.1728 6.9602 8.3314 8.5467 

0.3 
Present 2.7767 4.7178 5.4358 5.5530 6.7761 

Ref. 15 2.7768 4.7187 5.4366 5.5551 6.7789 

 

Numerous new results of frequencies parameters are presented in Tables 3 and 4 for laminated 

plates with different boundary conditions. In the case of Table 3, the geometrical parameters are 

taken to be / 0.1h a  , / 0.5a b   with various anisotropic degrees [0/90°], [0°/90°/0] and 

[0/90°/90°/0]. And the first two frequency parameters with three classical boundary conditions and 

four different anisotropic degrees, i.e. 1 2/ 5E E  , 10, 20, 50 are listed, respectively. The 

frequencies of the plates increase as the anisotropic ratio increases.  

 

Table 3 - The first two frequency parameters Ω for [0/90°], [0°/90°/0] and [0/90°/90°/0] laminated 

plates with different anisotropic degrees.  

 

Boundary E1/E2 
[0/90°] [0°/90°/0] [0/90°/90°/0] 

1 2 1 2 1 2 

FFFF 

5 1.9541 2.1457 1.6814 2.1398 2.1548 3.4791 

10 2.1894 2.3145 1.7365 2.1448 2.3459 3.6463 

20 2.4016 3.0793 2.0149 2.1674 2.6447 3.9214 

50 2.4398 3.8621 2.2841 2.6082 3.0199 4.2553 

SSSS 

5 5.1410 7.7645 6.3545 8.3443 7.0141 8.9712 

10 6.3544 9.0048 8.7534 10.003 9.3645 11.045 

20 8.1428 10.217 11.978 13.014 12.258 14.247 

50 10.769 12.544 15.871 16.978 16.247 17.688 

CCCC 

5 8.2161 11.341 12.573 14.211 13.547 16.544 

10 10.357 12.698 16.144 17.599 18.691 21.019 

20 12.105 15.017 21.028 23.104 23.100 26.211 

50 15.764 18.350 27.984 29.012 30.215 32.887 

 

In the case of Table 4, the lowest four frequencies for four-layered [45°/-45°/45°/-45°] 

laminated plates with seven types of boundaries (FFFF, FCFC, FSFS, SSSS, FCCC, SCSC and 

CCCC) are presented. The aspect ratio is chosen to be / 1.2a b  , and thickness-length ratio 

/ 0.2h a   is used in the calculation. The materials parameters are 1 2=10E E , 2 2GPaE  , 

12 0.25  , 12 20.5G E , 13 20.5G E . The frequencies of the laminated plates with SSSS, FCCC, 

SCSC and CCCC are higher than other boundaries, this is because the larger restraints at the edges 



increase the flexural rigidity of the plates and lead to higher vibration response. Meanwhile, the 

corresponding lowest six mode shapes in Table 4 that laminated plates with CCCC and SCSC 

boundary conditions are depicted in Figs 2 and 3, respectively. Next, the effects of linear Winkler 

and Pasternak foundation parameters on frequencies parameters are illustrated. 

 

Table 4 - The lowest four frequency parameters Ω for four-layer, angle-ply [45°/-45°/45°/-45°] 

with different boundaries. 

 
Boundary 

conditions 

Mode 

1 2 3 4 

FFFF 2.2375 5.6794 7.3487 10.985 

FCFC 3.0076 6.8245 8.1568 14.763 

FSFS 1.1275 5.0318 5.8762 11.541 

SSSS 8.8766 14.847 21.674 24.698 

FCCC 5.0348 10.593 15.975 17.234 

SCSC 9.5481 15.157 24.758 25.084 

CCCC 14.392 20.381 28.537 36.432 

 

 
 

Fig - 2. The first six mode shapes of the laminated composite plates with CCCC boundary 

condition: (a) m=1; (b) m=2; (c) m=3; (d) m=4; (e) m=5; (f) m=6 

 

 
 
  

Fig - 3. The first six mode shapes of the laminated composite plates with SCSC boundary condition: 

(a) m=1; (b) m=2; (c) m=3; (d) m=4; (e) m=5; (f) m=6 



The variation of the frequencies parameters   through the linear Winkler and Pasternak 

foundation parameters ( wk  and sk ) is shown in Fig 4. It is obvious that the change in frequencies 

parameters is very small when wk  and sk  is less than 105, while when the values of wk  and sk  are 

between 105 and 109, the frequencies parameters increase rapidly, which is a sensitive range. In 

the case of greater than 109, although the stiffness of wk  and sk  has a wide range of change, 

frequencies parameters rarely change.  

 

 
 

Fig - 4. The variation of the frequencies parameters through Winkler and Pasternak foundation 

parameters. 

4     CONCLUSIONS 

 

In this paper, free vibration of laminated composite rectangular plates with general boundary 

conditions has been performed with a modified Fourier series method. The displacement and 

rotation in each direction for laminated plates is described as an improved form of double Fourier 

cosine series and several closed-form auxiliary functions to eliminate any possible jumps and 

boundary discontinuities. Exact solutions are obtained by Rayleigh-Ritz method. And the 

comparisons between the results show that the presented method has high accuracy and reliability.  

The effects of boundary conditions, geometric parameters and linear Winkler and Pasternak 

foundation parameters on the frequencies are illustrated comprehensively. Finally, numerous new 

results for laminated composite rectangular plates with different geometric parameters and angle-

plies are also presented for future research. 
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