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ABSTRACT 
Mitigating the propagation of low frequency noise sources 

in ducted flows represents a challenging task since wall 
treatments have often a limited area and thickness. Loading the 
periphery of a duct with a periodic distribution of side-branch 
Helmholtz resonators broadens the bandwidth of the noise 
attenuated with respect to a single resonator and generates stop 
bands that inhibit wave propagation. However, significant flow 
pressure drop may occur along the duct axis that could be 
reduced using micro-perforated patches at the duct-neck 
junctions. In this study, a transfer matrix formulation is derived 
to determine the sound attenuation properties of a periodic 
distribution of MPPs backed by Helmholtz resonators along the 
walls of a duct in the plane wave regime. In the no-flow case, it 
is shown that an optimal choice of the MPP parameters and 
resonators separation distance lowers the frequencies of 
maximal attenuation while maintaining broad stopping bands. 
As observed in the no-flow and low-speed flow cases, these 
frequencies can be further decreased by coiling the acoustic 
path length in the resonators cavity, albeit at the expense of 
narrower bands of low pressure transmission. The achieved 
effective wall impedances are compared against Cremer 
optimal impedance at the first attenuation peak. 

 
INTRODUCTION 

 
The attenuation of the acoustic pressure field in ducted 

geometries is still a challenging task when addressing the 
control of low frequency components. This frequency range is 
present in most of the problems concerned by the aeronautic 
and building industries. Low-frequency noise content induced 
by turbulent flow in heating, ventilation and air conditioning 
system is a classical but unsolved control problem, especially in 
the low frequency range. Cylindrical expansion chambers have 

constituted a recurrent solution when shielded by perforated 
panels and including or not fibrous absorptive materials [1]. 
The use of classical fibrous material does not represent an 
option in the presence of an axial flow due to the transport of 
airborne particles in the working environment and life-cycle 
limitations. Such systems can be clogged by dust or oily 
substances which prevent their use in hospitals, food and 
pharmaceutical industries due to the risks of bacterial 
contamination. They can also be easily damaged by high flow 
velocity and temperature conditions, sources of fire hazards, so 
that they are difficult to use as such to attenuate the intake and 
exhaust noise of engines and blowers. 

The use of side-branch Helmholtz Resonators (HRs) is 
another option that provides axial damping to waves 
propagating in a duct. These control devices have been widely 
used as they are able to provide important attenuation values 
but confined in a narrow frequency band [2]. To enhance the 
frequency range of maximum performance, arrangements made 
up of a set of side-branch HRs combined in different ways has 
attracted the attention of several authors. One of the first 
reported works [3] considered an analytical formulation for 
describing the sound transmission in a duct lined with an array 
of resonators. They have been modeled using lumped 
impedance formulation, assuming one-dimensional plane wave 
propagation and neglecting flow effects. Recommendations 
have been provided on the relation between the length of the 
HR openings and the frequency range over which the silencer 
is active, as well as the influence of ordering dissimilar 
resonators on the transmission loss (TL). The same problem 
has been revisited later on [4] with a deeper analysis relating 
the simulation results with the physical phenomena involved 
for the wave propagation in periodic waveguides. It has been 
shown that the solutions that describe the dynamics of periodic 
systems like a periodic array of scattering sections in a 
waveguide are Bloch wave functions determined by an 
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eigenvalue problem of the transfer operator. From the 
dispersion relation, the Bloch wave number is found to exhibit 
a band structure, which is investigated in terms of 
characteristics of the eigenvalue problem. 

This approach has also been used for the attenuation of 
acoustic waves propagating in a train tunnel before shock 
formation [5] with an array of identical equally spaced HRs 
connected axially to the main duct tunnel. The authors verified 
that the Bloch waves are characterized by the emergence of 
“stopping bands” where the sound waves are quickly damped 
along the duct axis, and “passing bands” where they can 
propagate. The stopping bands appear because of the 
coincidence between the HR resonance and the Bragg 
reflection due to their periodic arrangements. They occur when 
the axial spacing between the neighboring resonators becomes 
a multiple of half the acoustic wavelength. 

More recently, the same combination of side-branch 
resonators mounted in a duct without flow has been explored 
both theoretically and experimentally [6]. In order to enhance 
the attenuation bandwidth in the low to medium frequency 
range, it is necessary not to place the resonators in close 
proximity to avoid interaction between them that would lead to 
a decrease of their overall performance. Using the transfer 
matrix method for simulating the TL properties of a periodic 
array of HRs, the authors in [6] considered HRs separated by a 
distance much larger than the resonators dimensions. They 
validated their prediction against measurements performed on 
an array of five identical HRs mounted on a duct with one 
loudspeaker on a side and multiple loads on the other side. 
Although the averaged TL performance was much improved in 
relation to those of a single HR, the total dimensions of the 
resonators were still quite large when considering shifting the 
maximum attenuation performance to lower frequencies. 

Inspired by these results, the authors [7] proposed a 
periodic configuration of HRs with special attention to obtain 
good attenuation performance in the low frequency range while 
maintaining a reasonable size of the device in order to be used 
in real-life problems. One possible way to achieve these 
conflicting objectives is to increase the effective path length 
taken by the acoustic wave when entering into the HR. This 
idea has been already presented [8] within the frame of acoustic 
metasurfaces conceived to enhance normal incidence sound 
absorption at low frequencies. They have presented analytical 
simulations comparing a classical partition composed of a 
perforated plate backed by an air cavity, and a metasurface with 
a coiled air chamber cell backing each aperture of the plate. By 
this approach, the effective path length of the inner channels 
within each cell could be made much greater than the thickness 
of the backing cavity, maintained at a reasonable size. The 
analytical results showed that total sound absorption could be 
achieved at 125 Hz with an overall partition depth only equal to 
12.2 mm. Even though these results are remarkable, they also 
present drawbacks, as the frequency range of high absorption is 
extremely narrow around the target frequency, decreasing 
rapidly when moving apart from the Helmholtz resonance. 

Recently, the authors [7] have explored a combination of the 
previous techniques applied to duct acoustics in order to 
achieve both high attenuation performance in the low 
frequency range and over a broad frequency band. To keep a 
reasonable size for the control device, it was found that a 
periodic array of side-branch HRs with a coiled back space in 
the cavity provided a lower frequency for the maximum 
attenuation and the creation of stop-bands over a broad 
frequency range. The influence of several physical parameters, 
including the spatial HR period, the number of resonators and 
the number of turns in the coiled cavity have been assessed, 
showing the potential of the proposed methodology for low 
frequency noise control. 

The proposed set-up has been analyzed in the no-flow case 
and in the presence of a mean axial flow. However, when an 
airflow is produced by connecting a fan to the pipe, non-
acoustical factors also have to be considered. The input 
pressure to the system must overcome the pressure drop of air 
with sufficient momentum so that a given airflow rate can be 
distributed in the conditioned space [9]. The total pressure can 
be calculated using the modified equation of Bernoulli for 
rotational, steady and incompressible flows [10]. In case of an 
airflow passing through a duct, pressure drops appear due to 
fluid friction or changes in either the direction or the amplitude 
of the flow velocity, as it occurs when introducing connectors 
between sections, bands and fittings. These losses depend on 
the flow rate and on the aspect ratio between the two sections 
that are connected. Exact evaluation of the dynamic pressure 
drop is quite complex and, in most cases, is obtained from 
empirical laws, with a term proportional to the velocity head 
multiplied by the dynamic loss coefficient, determined 
experimentally. In the present work, pressure drops are induced 
by the connection of a resonator neck to the main duct and can 
be analyzed considering the formulation for a branch take-off, 
used in air conditioning ducts for splitting the airflow into 
branches [10]. These connections are responsible of important 
pressure drops that have to be avoided in practice.  

In this work, we propose to complete the previous array of 
HRs by including Micro-Perforated Panels (MPPs) or patches 
at the neck-duct junction to limit the pressure drops. MPPs 
have been widely studied [11,12]. In building acoustics, MPP 
resonance absorbers consist of panels perforated with holes of 
sub-millimeter diameter, situated in front of a rigid or flexible 
backing wall. They dissipate the acoustic energy through 
viscous losses around the Helmholtz resonance. The use of 
micro-perforations for reactive and dissipative duct silencers 
has recently been investigated. It has been found that micro-
perforated cylindrical liners constitute efficient sound-
attenuating devices without the introduction of porous material 
[13,14,15]. The problem of limiting pressure drops has been 
considered in the frame of the aerodynamic drag due to a flow 
over external acoustic liners used for the control of noise 
emissions by aircraft propulsion systems [16]. These authors 
have considered different types of perforate-over-honeycomb 
liners with various aperture geometries when subjected to a 
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mean flow in an impedance tube. The axial static pressure drop 
along the liners was computed based on the liner resistance 
factor in the frequency range between 400 and 3000 Hz. They 
have shown that reducing the hole diameter resulted in a 
reduction of the drag for a typical liner design and studied how 
the change in the perforate geometry and orientation relative to 
the flow would create a configuration with improved drag 
performance. Measurements were carried out at Mach 

3.0M  and 5.0M  under acoustic tonal excitations. It 
was concluded that differences in the overall attenuation 
between the geometries were small and that the acoustic liner 
performance need not to be sacrificed to reduce the liner drag.  

Following these results, we propose to insert MPP patches 
at the entrance of side-branch HR arrays and quantify their 
effects on the TL performance. The aim is to compare the 
effective impedance of the HR array against optimal impedance 
models [17,18,19] to obtain guidelines on selection and 
optimization of the main MPP and HR parameters. The 
contents of the paper are as follows. Sect. 2 presents the HR 
array configuration and the analytical model implemented to 
determine the TL under different physical conditions (an air or 
a coiled cavity, visco-thermal losses and a grazing flow). 
Results from this model are presented in Sect. 3 in a parametric 
study to examine how HR arrays with MPP patches, with a 
coiled cavity and under a uniform mean flow may achieve an 
optimum wall impedance. Finally, the main conclusions and 
future works are summarized in the last section. 

ANALYTICAL MODEL FOR THE RESONATORS 
ARRAY 

 
The physical set-up of the problem under study is depicted 

in Figure 1. It consists of a semi-infinite duct excited by an 
acoustic source located on one side, and with a semi-anechoic 
termination on the other side. The influence of a grazing mean 
flow along the axial direction of the duct is accounted for. In 
order to attenuate the incident wave, one considers a set of N  
side-branch HRs, separated by a distance D  and connected to 
the waveguide through a series of MPP patches situated at the 
HR neck entrance, as indicated in the figure below. 

 

 
 

Figure 1. Physical arrangement of an array of HRs connected 
by MPP patches to a straight duct carrying a mean axial flow 

and subjected to an acoustic excitation. 

To obtain analytical expressions to predict the TL of the 
complete system, we start by summarizing the main impedance 
equations that describe the resistive and reactive behavior of a 
single HR in terms of the resonator physical constitutive 
parameters. This leads to a transfer model for a periodic array 
of HRs plugged with MPP patches onto a rectangular duct that 
constitutes the whole control system. 
 
Input impedance for the basic HR cell with MPP 

The classical model for a single resonator unit with 
MPP expresses the input impedance at the entrance of the 
HR as the contribution of three different terms, as follows 
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The first element, MPPZ , describes the MPP overall 

transfer impedance. For a rigid MPP with circular holes of 
diameter hd  and thickness ht , it is given by the following 

expression based on short tubes Rayleigh theory [11, 14] 
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with   the perforation ratio,   the dynamic viscosity of the 

air,    visc.2 rdk hh  , the perforate constant, e.g. the ratio 

of the hole radius to the viscous boundary layer thickness, 

   0visc. r , and 0  the air density. The first term in 

Eq. (2) represents the internal part of the transfer impedance 
while the second and third terms account for added mass and 
frictional loss end-corrections respectively in the reactance and 

the resistance, with 20eR  for holes with rounded 

edges. This expression includes the flow reactance and 
resistance corrections that have been educed from flow duct 

measurements over micro-perforates at Mach 15.0M  

[14]. They appear respectively in the second and fourth terms, 

with   3
6.121

 MFM  and  15.0K . 

In Eq. (1), the second element, 1pZ , represents the 

transfer impedance of the hole neck, that can be described 
using Maa's model [11] for a single perforation of diameter 

1d  and thickness 1t , as 
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This expression is similar to Eq. (2) except that the terms 
related with the mean flow are not taken into account and it 
concerns a single aperture. The correction term, C , takes the 
value 8C   for a sharp-edged hole and 4C   for a rounded-
edged hole that produces less dissipation [14].  

Finally, the third element of Eq. (1) is the input impedance 
of the HR cavity of depth 1D , that can be expressed in a 

classical form as pSDkZS )cot(i 1001 , in terms of 1S  and 

pS  that are respectively the cross-sections of the neck and of 

the backing cavity, with 000 cZ   the air characteristic 

impedance.  

 
Side-branch resonators array 

The individual HRs are connected to a rigid duct of cross-
section dS  through the MPP patches. These unit cells are 

repeated periodically with a separation distance equal to D , as 
indicated in Figure 1. One also assumes that DdD  1 . This 

system has been analyzed in [6] under no-flow conditions 
considering multi-dimensional wave propagation in the neck-
cavity interface. Here, we consider only plane wave 
propagation in all the sub-systems, limiting the frequency of 
analysis below the cut-on frequency of the duct, neck and 
cavity. 

For a particular thn  unit cell, the right-going and left-
going waves can be expressed as a function of the 
corresponding pressure amplitudes, as 
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for .)1( nDxDn   At the junction, nDx  , continuity 

conditions are applied for the pressure and for the acoustic flow 
rate. A linear system of two equations is obtained  
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that is solved for 
1nC  and 

1nC  as follows, 
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which can be written in matrix form as 
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the transfer matrix of the unit cell, in accordance with [6]. 
If we consider now an array of N

 

resonators, the total 
transfer matrix can be calculated as the product of the 
individual transfer matrices as 

N
i

N

i
N TTT 

1
       (9) 

where we should consider that TT i  since the resonators are 

identical. 
 We can particularize this general theory to the case where 

we deal with a semi-infinite duct with an anechoic termination 
on the right-hand side after the last resonator. In this case, there 
are no waves reflected backwards by the termination and the 

last reflection coefficient reads 0
NC .  Assuming also a unit 

incident plane wave, 10 C  and operating between the 

previous expressions, Eq. (7) yields the following expression 
for the transmitted amplitude, 
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The TL for the semi-infinite duct is then given by 






 N
N

C
C

C
10

0
10 log20log20TL ,       (11) 

that will be used in the next section to evaluate the periodic 
array attenuation performance.  

 
Coiled coplanar air chamber with visco-thermal losses 

The air cavity chamber used in classical HRs with or 
without MPPs can be modified with the objective to increase 
the total length of the acoustic path and to decrease the HR 
Helmholtz resonance frequency. For simplicity, we consider a 
cylindrical neck and a square cavity so that the neck and cavity 

cross-sectional areas are expressed as 4/2
11 dS   and 

2aS p  . In the coiled resonator, the cavity depth of the 

classic resonator 1D  is replaced by cD1 , the effective length 

path of the acoustic wave. Assuming p  turns in a rectangular 

folded pattern with quarter-circle path at each bend, the total 
effective acoustic path length reads 
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provided that abwp  )(2  with w  the separation distance 

between two inner walls and b  the walls thickness. 
Viscous losses may occur between the walls of the 

labyrinth, whose separation distance w  might be less than 

twice the viscous boundary layer thickness  visc.r . This adds 

further dissipation to the losses already accounted for by the 
model of Maa in the neck through Eq. (3) and in the MPP patch 
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where the friction coefficient, 47.1friction C , is calculated as 

  rpC 11friction   . 4.1 Vp cc  is the ratio of 

the air specific heat at constant pressure and volume 
respectively, 72.0 Tpr cp   is the Prandtl number and 

T  is the air thermal conductivity. 

 
Side-branch resonators array 

Periodic systems like the one under study have already 
been analyzed in terms of the Bloch wave theory [4]. They are 
characterized by the condition 

)()( xfeDxf  ,  (15) 

that allows to obtain a recursive relation on the pressure 
amplitudes relating two consecutive control units as 
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with e  the eigenvalue of the transfer matrix T . The 
analysis of the characteristic wave solutions is then reduced 

to the eigen-analysis of T . The eigenvalue e  determines 
the propagation of a particular wave type defined by its 

corresponding eigenvector  T vv  that contains a linear 

combination of positive and negative-going plane waves. The 
solutions   are complex-valued and composed of a real part, 

r , the attenuation constant, that describes the amount of 

attenuation experienced by the waves travelling along the 

duct axis, and an imaginary part, i , the phase constant, 

responsible of phase changes that can be a pure delay for 
propagating waves or a   rotation for a HR resonance. 

Frequency ranges occur in which 0r  and 0r  

denoted pass and stop bands, respectively. In the case of a 
semi-infinite duct, only the positive-going plane wave exists 
and Eq. (16) can be simplified to 

    NnvvaCC nnn ,,2,1,
T

11

T
  .  (17)  

Considering that the solution of the system can be obtained 
by the periodic application of the transmission relation (7), 

the complex constant na  is expressed as 1
11
 n

n aa  [6].  

PARAMETRIC STUDIES 
 
The averaged TL results obtained from the transfer 

matrix formulation will be first compared against results 
published in the literature and then used to assess the 
influence of several parameters on the TL performance of 
resonators arrays. In particular, the effect of MPP patches 
will be examined as well as the resonators separation 
distance, an elongated coiled acoustic path in the HRs 
cavity, visco-thermal losses in the HR neck and cavity, and 
a low-speed uniform flow in the duct. By default, the 
nominal constitutive parameters of the HRs used in the 
simulations are as follows: a neck diameter cm5.31 d , a 

neck length cm55.41 t  connected to a square cavity of 

depth cm41 D  and of cross-sectional surface area 
2cm33.833.8 pS . Each HR is plugged onto the top 

wall of a rigid rectangular duct of cross-sectional area 
2cm63.363.3  ddd baS . MPP patches with holes 

diameter mm5.0hd , thickness mm5.0ht  and 

perforation ratio %7.8 , are eventually inserted at the 

neck-duct junctions. As it can be seen in Figure 1, the duct 
is excited by an incident plane wave incoming from the 
left-hand side of the duct and the right-hand side 
termination is assumed to be anechoic. The array is made 
up of a periodic distribution of 5 Helmholtz resonators 
separated from each other by a distance m4.0D . 

Simulations have been carried out up to 1 kHz, well below 
the first cavity, neck and duct cut-on frequencies, 
respectively at 1810 Hz,  4250 Hz and 4857 Hz. A plane 
wave regime is assumed in the corresponding fluid 
domains, including at the neck-cavity interface. 

Influence of MPP patches on the TL of resonators arrays 
For comparison purposes, these parameters are those 

used in [6] in which a plane wave regime was assumed in 
the main duct. In the paper [6], a modal formulation was 
proposed for the wave propagation in the neck and in the 
cavity and the averaged TL of an array of HRs without 
MPP patches was predicted in the no-flow case. It can be 
seen that the averaged TLs predicted by the present model 
and corresponding to the black curves in Figure 2 
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associated to a single HR and an array of 5 HRs without 
MPP are in excellent agreement with those shown in 
Figure 8 from [6].  
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Figure 2. Influence of MPP patches at the duct-neck 
junction on the averaged TL of side branch resonators 
made up of a single HR (dashed black: without MPP; 
dashed blue: with MPP) and an array of 5N  HRs 

separated by a distance m0.4D  (solid black: without 

MPP; solid blue: with MPP). 
 

A major feature due to a periodic array of HRs is to 
provide extra bandwidths over which the axial attenuation 
is enhanced with respect to that of a single HR that solely 
exhibits a sharp and narrow peak around its Helmholtz 
resonance frequency Hz411H f . Indeed, a periodic 

array of HRs provides an averaged TL that exceeds that 
due to a single HR over the bands Hz380Hz248  , 

Hz630Hz465   and Hz982Hz843  . Above Hf , 

stop bands appear around the Bragg resonance frequencies, 

B,nf , that occur whenever the separation distance between 

two resonators comprises an even or odd number of half-

wavelengths, e.g. when 1,B,  nnDkn   or equivalently 

when  Dncfn 20B,  . At these frequencies, pressure-

release axial resonances occur between two consecutive 
neck-duct junctions. They block the axial propagation of 
sound waves, as observed in Figure 2 over the bands 

Hz650Hz425   and Hz1000Hz820  .  

Inserting MPP patches at the duct-neck junctions adds 

further resistance and reactance to the input impedance bZ  

at the HR entrance, as seen from Eq. (3). As observed from 
Figure 2 in the case of a single HR, this shifts the 
Helmholtz resonance frequency from 411 Hz down to   379 
Hz. It also lowers the attenuation peak by about 22 dB and 
broadens its half-bandwidth. If one considers an array of 5 
HRs, a similar effect occurs around the first maximum of 

attenuation with a further shift of the Helmholtz resonance 
frequency down to 369 Hz and a 15dB reduction of the 
attenuation peak with respect to a single HR with MPP. 
However, inserting MPP patches hardly modifies the total 
bandwidths Hz630Hz200   and Hz1000Hz820   

within which the incident wave is not fully transmitted, or 
in other words, it weakly affects the widths of the pass 
bands.  
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Figure 3. Influence of MPPs on the averaged TL of side 
branch resonators made up of a single HR (dashed black: 
without MPP; dashed blue: with MPP) and an optimized 
array of 5 HRs (solid black: without MPP, m0.42opt D ; 

solid blue: with MPP, m0.45MPP
opt D ).  

 
Figure 3 shows the influence of MPP patches on the 

averaged TL of HR arrays whose separation distance has 
been or not optimized. In accordance with [5,20], there 
exists an optimal separation distance optD  between two 

consecutive resonators that maximizes the bandwidth of 
the averaged TL around Hf . It is achieved when the 

Helmholtz frequency coincides with the first Bragg 
resonance frequency, e.g. when  opt0B,1H 2Dcff  . 

From Figure 3, it can be seen that increasing the structural 
periodicity of HRs without (resp. with) MPPs from 

m4.0D  to m0.42opt D  (resp. m0.45MPP
opt D ) 

significantly broadens the half-bandwidth of the first stop 
band, due to merging between the Helmholtz and the first 
Bragg resonances. This is achieved at the expense of a 
reduction in the averaged TL peak value that decreases 
from 31 dB down to 16 dB for an array of 5 HRs without 
MPPs. In this case, the first stop band is symmetric with 
respect to 411 Hz, frequency at which a sharp gap of 5 dB 
occurs in the averaged TL. When inserting MPPs, this gap 
in the averaged TL occurs at a lower frequency, 379 Hz. It 
drops by the same amount, 5 dB, but it is broader and well 
separates two humps due to strong energy exchange 
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between the coincident Helmholtz and first Bragg resonant 
states.  
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Figure 4. Influence of MPPs (a) on the attenuation constant 
and (b) on the phase constant of an optimized array 
composed of an infinite number of HRs (solid black: 
without MPP, m0.42opt D ; solid blue: with MPP, 

m0.45MPP
opt D ).  

 
This doubling resonance feature appears clearly in 

Figure 4(a) which also shows that the averaged TL tends 
towards the attenuation constant of the positive-going 
waves obtained from an eigen-analysis of the elementary 
cell transfer matrix. Moreover, slight phase variations can 
be seen in Figure 4(b) over the first stop band of HRs with 
MPPs whereas the phase is constant (except around the 
gap) when considering HRs without MPPs. An alternative 
representation of these effects can be seen in Figure 5. 
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Figure 5. Bloch-Floquet dispersion curves (solid: 

 optIm qD ; dashed:  optRe qD ; iq ) for the optimal 

array of HRs (black: without MPPs; blue: with MPPs). 
 

Bragg stop bands are clearly regognized from the 
dispersion curves in Figure 5: they occur whenever 

  2,1,cteRe opt  nnqD  . Also, The HR separation 

distance has been optimized such that the first Bragg stop 
band coincides with the HR resonance frequency. Hence,  
both resonances occur when  optoptH Re qDDk   . 

Mechanisms of energy exchange between the two coupled 
resonances with or without MPPs are important because 
they may generate a trough in the first stop band of the 
averaged TL, as seen in Figure 4(a). This would require 
further studies to limit this effect.   

Influence of a coiled cavity on the TL of resonators arrays 
It has been seen that periodic arrays of HRs without 

MPPs, but with an optimized separation distance, exhibit 
enhanced attenuation over a broad stop-band in the mid-
frequency range. Inserting MPPs at the duct-neck junction 
lowers the frequency of maximum averaged TL, but it 
hardly changes the first stop band frequency range. Of 
interest is to downshift the first stop band without 
increasing the HRs cavity depth. This can be achieved by 
increasing the acoustic path length in the cavity in order to 
lower the Helmholtz resonance frequency Hf . Based on 

the layout proposed in [8] to enhance the performance of 
resonance absorbers at low frequencies, the acoustic path 
length in each HR can be extended by inserting a 
rectangular coil in the cross-sectional plane of the cavity, 
centred on the axis of the neck opening and whose walls 
have a height equal to the cavity depth. According to Eq. 
(12), given the cavity length, width and depth, a target 
acoustic path length is determined by a suitable choice of 
the inner walls thickness, b , of their separation distance, 
w , and of the number of folding turns in the coiled 
resonator, p , with the constraint that the neck diameter 1d  

should stay lower than the wall separation distance, w2 , in 
order to avoid obstruction of the neck opening at the 
junction within the coiled cavity.  

Figure 6 shows that a periodic array of 5 coiled HRs 
with 2p

 
turns in each cavity, with MPPs and with an 

optimized spatial period m0.74MPP
opt,c D , downshifts the 

Helmholtz resonance frequency from Hz379MPP
H f  to 

Hz233MPP
H,c f , reduces the width of the first stop band 

by a factor 2, but still achieves a broad attenuation between 
130 Hz and 350 Hz, with a maximum averaged TL of about 
11 dB, almost similar to that of the array of uncoiled HRs. 
The effective acoustic path length in the resonators is then 

extended from m0.041 D  to m0.261,c D . 
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Figure 6. Influence of a coiled cavity on the averaged TL 
of a single HR with MPPs (dashed curves) and on a 
periodic network of 5 HRs with MPPs (thick curves) 
assuming an air cavity (blue curves) and a 2-turn folded 
acoustic path in the cavity cross-sectional plane (red 
curves). 
 

One observes in Figure 6 that the network of coiled 
resonators with MPPs exhibits a sharp and narrow peak of 
averaged TL that reaches 18 dB at 774 Hz. However, it 
would reach up to 30 dB without the MPPs dampening 
effect. This peak is due to the first high-order quarter-
wavelength resonance of the HR that, in a first 

approximation, occurs at     1c,10c,41, 412 tDcnfn 
 

with 1n . The theoretical value, 839 Hz, overestimates 
by 8% the frequency of peak averaged TL shown in  Figure 
6. These resonances occur due to the back-cavity cross 
section of the coiled resonator, 2

c, 4wS p  , being only 

slightly greater than the neck cross-section 1S , so that 

7.11c, SS p
 for the array of coiled HRs whereas 

6.71 SS p
 for the array of uncoiled HRs. Note that 

1c, SS p  tends to 1 as the number of turns in the folded 

resonator increases, e.g. when one aims at lowering MPP
c,Hf .  

Accounting for visco-thermal losses between the walls 
of the air cavity and between the walls of the coiled 
labyrinth is assessed in Figure 7 for a periodic network of 
5 HRs with MPPs. With a 2-turn folded resonator, the coil 
walls are separated by a distance m02.0w . The visco-

thermal losses then hardly affects the averaged TL over the 
first and higher-order Bragg stop bands, except at 774 Hz, 
the the first high-order quarter-wavelength resonance, with 
an averaged TL peak reduced by 5 dB. As expected, the 
visco-thermal losses can be neglected for the HRs with air 
cavity. 
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Figure 7. Influence of viscothermal losses on the averaged 
TL of a periodic network of 5 HRs with MPPs assuming an 
air cavity (blue curves) or a 2-turn folded acoustic path in 
the cavity cross-sectional plane (red curves): without 
losses (thick solid) and with losses (thin solid with circles).  
 
Influence of a uniform flow  

Figure 8 shows the effect of a low speed uniform 
grazing flow on the averaged TL performance of a periodic 
network of 5 HRs with MPPs at the neck-duct junctions 
and with either an air or a coiled cavity. Mean-flow effects 
on the MPP is accounted for through educed reactance and 
resistance terms  that appear respectively as the second and 
fourth terms in Eq. (2) for the MPP overall transfer 
impedance. From these expressions, it can be seen that 
grazing flow increases the MPP resistance by a fraction of 
the Mach number whereas it decreases the outer end-
correction of the MPP holes at the neck-duct opening, but 
to a lesser extent than the resistance. For a mean flow 
speed of 1ms17   (Mach 0.05), the added flow specific 

resistance amounts to 0.08 whereas the specific reactance 
is reduced by a multiplicative factor 23.0MF . 

It can be seen from Figure 8 that the resistance added 
to the HRs arrays by the low-speed flow causes a decrease 
by up to 4 dB of the maximum averaged TL at the first 
stop-band and, for the coiled cavity, at both the first stop-
band and quarter-wavelength resonance. Moreover, the 
grazing flow slightly increases the width of the first stop-
band. The flow mass end corrections only provide minute 
increases of the Helmholtz resonance frequencies of the 
HRs with air and coiled cavities due to the low flow speed.   
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Figure 8. Mean-flow effect on the averaged TL of a 
periodic network of 5 HRs with MPPs assuming an air 
cavity (blue curves) and a 2-turn coiled path in the cavity 
(red curves): without flow (thin solid with circles) and 
with flow at Mach 0.05 (thin solid with diamonds); losses 
are accounted for in the cavity. 

Comparison against optimal impedance models    
It is of interest to determine if the effective impedance 

of the duct wall onto which is plugged an array made up of 
a periodic distribution of Helmholtz resonators is close to 
exact optimal wall impedances that maximize the axial 
damping of the least attenuated mode, e.g. the plane wave 
mode. They have been derived by Cremer [17] for a 
rectangular duct in the no-flow case and more recently in 
[19] for a circular duct with uniform mean flow, extending 
the asymptotic results of Tester [18]. In the no-flow case, 
Cremer [17] showed that the maximum axial decay rate of 
the least attenuated mode in a rectangular duct of height 

db  was achieved for the optimum impedance value, 

  dbkZ 0opt i74.094.0  , of the one-sided locally-

reacting wall treatment. In order to compare with this 
optimal impedance, an effective impedance can be defined 

for a periodic array of HRs as eZZ ineff   with 

 opt1 DaS de   the percentage of open area obtained by 

dividing the section of the neck, 1S , by the section of the 

elementary cell optDad . The closest match with the Cremer 

impedance, i041.0051.0opt Z , evaluated at the first 

attenuation peak, is obtained at Hz256cH, f  for an 

array of HRs with a coiled cavity and without MPPs for 
which i024.0079.0eff,c Z . The second closest match is 

found at Hz411H f  for an array of HRs with an air 

cavity and without MPPs, for which i007.0069.0eff Z  

whereas i064.0082.0opt Z . Inserting MPP patches at 

the neck-duct junctions brings added resistance that moves 
the effective impedance, i039.0082.1MPP

eff Z  evaluated 

at Hz379MPP
H f  ( 25.00 dbk ), further away from the 

optimal impedance i059.0075.0opt Z . Another added 

resistance is brought by the visco-thermal losses and by the 
mean flow effects. For instance, if these two effects are 
accounted for, one finds i12.093.2flowMPP,

eff Z  at 379 

Hz, the effective impedance for an array of HRs with air 
cavity and with MPPs in contact with a mean flow of Mach 
number 0.05M . It is far, especially the resistive part, 
from the asymptotic optimal impedance 

  i053.0068.01 2
opt

flow
opt  MZZ  derived by Tester 

[18] and valid for very low Mach numbers. Suitable MPP 
parameters could then be found so that the effective 
resistance of the HR array gets closer to the desired 
optimal resistance. If visco-thermal losses are negligible in 
the cavity, the optimal reactance can then be achieved 
through suitable adjustment of the cavity parameters, as 
carried out in [19] for MPP silencers. If visco-thermal 
losses cannot be neglected, they may substantially modify 
the effective reactance and resistance so that both 
quantities should be simultaneously optimized. 

CONCLUSIONS 
 
A transfer matrix formulation has been presented to 

predict the averaged TL of arrays made up of a periodic 
distribution of side-branch Helmholtz resonators plugged 
through MPP patches to a main duct carrying a uniform 
grazing flow. Such a distribution creates a set of stop bands 
for which the acoustic wave is attenuated when travelling 
through each HR cell. Setting the spatial period between the 
HRs at half the Helmholtz resonance wavelength significantly 
broadens the width of the first stop band, due to merging 
between the Helmholtz and the first Bragg resonances. 
Coiling up the acoustic path in the cross-section of the HRs 
cavity significantly lowers the stop bands centre frequencies, 
here by a factor 1.6 for a 2-turns folded path, while still 
achieving a broad attenuation bandwidth. For the geometry 
considered, the effect of visco-thermal losses on the 
attenuation levels over the first stop-band are moderate for 
classic and 2 -turns folded path cavities. 

Although HRs with MPPs are keen to limit the flow 
pressure drop, it was found that inserting MPP patches at the 
neck-duct junction of periodic HR arrays lowers the 
maximum attenuation level by up to 5dB and creates 
doubling resonance phenomenon that breaks the symmetry of 
the first stop-band and generates a gap in the TL, all the more 
sharper than the number of HRs increases. As expected, this 
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feature was still observed when coiling up the HR cavity air 
space or when accounting for visco-thermal losses in the 
cavity. It was verified that the added resistance brought by 
the MPP moves the HR array effective impedance away from 
Cremer's optimal impedance at the first stop-band centre 
frequency.   

A uniform low-speed flow adds further resistance to 
the HR array effective impedance, thereby decreasing by 
up to 4 dB the averaged TL peak with respect to the no-
flow case. It corresponds to the worst configuration in 
which the effective resistance is the furthest from the 
optimal one with flow. The closest match with the optimal 
Cremer impedance was obtained at the first attenuation 
peak for an array of HRs with a coiled cavity and without 
MPPs. 

Subsequent studies could be driven by the search for 
suitable MPP and/or HR parameters that would provide an 
effective impedance of the HR array that would match the 
wall optimal impedance at the HR Helmholtz resonance in 
the flow case. Such optimization study is expected to limit 
the sharp TL trough within the first stop-band. 
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