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ABSTRACT 

Considering the effect of teeth surface sliding friction, 

free vibration of two-stage planetary gears  (TPG) is 

studied theoretically for the first time. The lateral-

torsional coupling dynamic model and equation are 

established with three degrees of freedom: two 

translations and one rotation. The change rule of 

natural frequency is discussed with the case of first 

stage planetary gear’s number 4 and second stage 

planetary gear’s number 3, 4 and 5. Afterwards three 

vibration modes are summarized by calculating the 

free vibration. In order to understand the behavior of 

friction, the effect of friction on natural frequencies is 

analyzed for the case of considering friction and not 

considering friction. Furthermore, the ‘self-coupling’ 

phenomenon is obtained from the vibration of center 

component of TPG. Meanwhile, the ‘mutual coupling’ 

is obtained between the first-stage planetary gear (FPG) 

and the second-stage planetary gear (SPG). 

INTRODUCTION 

Due to the advantage of large transmission ratio 

and strong carrying capacity, planetary gears are 

widely used in ship shafting device, wind power 

transmission, aerospace and other fields. However, the 
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problems of vibration and noise are particularly 

serious. According to reliable reports, the noise in the 

helicopter can exceed 100 dB caused by the vibration 

of planetary gear. Thus, it is of great practical 

significance to study the vibration characteristics of 

planetary gear. 

At present, many scholars have studied the free 

vibration of planetary gear. As early as 1994, 

Kahraman has simplified the planetary gear model, 

and studied the free vibration for the case of only 

considering torsional degree of freedom for the first 

time [1]. Based on the research of Kahraman, Parker 

constructed the lateral-torsional coupling dynamics 

model of planetary gear. He classified the vibration 

modes into three types: rotational, translational and 

planet modes. This research provided a modeling 

calculation method of planetary gears [2-3]. Dhouib 

proposed a compound planetary gear train to study the 

free vibration. His research indicates that the change 

of planets' angular position does not affect vibration 

mode [4]. Kahraman developed a family of torsional 

dynamic models of compound gear sets to predict the 

free vibration characteristics under different kinematic 

configurations resulting in different speed ratios [5]. 

Qian proposed a lateral-torsional coupled dynamic 
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model, derived the associated reduced-order 

eigenvalue for each type of vibration mode and 

presented the analytical expression of natural 

frequency for planet mode [6]. By designing a two-

stage closed-form planetary gear, Zhang obtained the 

natural frequencies and vibration modes. Meanwhile, 

the finite element model is established to validate the 

lumped-parameter model [7]. Huang developed a 

purely torsional dynamic model of closed-form 

planetary gear set to investigate its natural frequency 

and free vibration modes [8]. Sheng investigated the 

vibration modal properties of double-helical planetary 

gear system and he categorized the vibration modes 

into three essentially different types of modes 

including planet mode, rotational-axial mode, and 

planer-translational mode [9]. Eritenel studied the 

modal properties of three dimensional helical 

planetary gears [10]. By simplifying the compound 

planetary gears, only considering the rotational degree, 

Guo studied the natural frequencies and vibration 

modes. However, the purely torsional model is simple, 

and the lateral-torsional coupling model need further 

be considered [11]. Parker analyzed the vibration 

modes of planetary gears with unequally spaced 

planets and an elastic ring gear [12]. Tristan 

established the two spur planetary gears models and 

measured the rotational and translational vibration 

using experiment. Their researches verified that the 

lumped-parameter and finite element models could be 

used effectively to predict the natural frequencies and 

modal properties established by experimentation [13]. 

From the theoretical and experimental point of view, 

the above scholars have made many research on the 

free vibration of planetary gears, and obtained some 

meaningful conclusions, which laid a theoretical 

foundation for the study of planetary gear. 

At present, the friction’s effect on the dynamic 

characteristics of planetary gears  has also been 

considered by scholars. Vaishya analyzed the non-

linear and parametric effects caused by the teeth 

surface sliding friction [14]. Velex presented an 

analysis of teeth surface friction excitations. And the 

effects of teeth surface friction, time varying meshing 

stiffness and other parameters on the dynamic 

characteristics are also discussed [15]. Liu studied the 

influences of friction on parametric instabilities and 

dynamic response of a single-mesh gear pair [16]. He 

considered the influences of sliding friction on the 

dynamics of spur gear pair with time-varying stiffness, 

and studied the sliding friction’ effects for the helical 

gears [17-18]. Csoban studied the effect of teeth 

friction losses on the efficiency of planetary gears [19]. 

The above literatures considering friction mainly 

focus on vibration response. However, few reports of 

free vibration of planetary gears with friction can be 

found. In this paper, the TPG dynamic model with 

friction is studied for the first time. The effects of 

friction on natural frequency and vibration modes are 

discussed for the case of considering friction and not 

considering friction. This paper builds a theoretical 

foundation for the research of vibration response. 

This paper is consisted of five parts. In Section I, 

the TPG dynamics model is established. The force 

analysis is done between the sun and planets, planets 

and ring, planets and carrier. Also, the dynamic 

equation of component of planetary gear is derived. In 

Section II, free vibration of the TPG is calculated. 

Natural frequencies obtained by considering friction 

are compared with those not considering friction. The 

mechanism of friction on natural frequency is also 

revealed. In Section III, the ‘self-coupling’ 

phenomenon and ‘mutual coupling’ phenomenon are 

obtained from the vibration of center component of 

TPG. Section IV is Conclusion. Section V is 

Acknowledgements. 

DYNAMIC MODELING OF PLANETARY 

GEAR 

Consider a TPG model shown in Figure 1 and 

Figure 2. The whole system consists of the FPG 

containing carrier Z
I
𝑛
, ring Z

I
𝑟
, sun Z

I
𝑠
, planets Z

I
𝑝
 and 

the SPG containing carrier Z
II
𝑛

, ring Z
II
𝑟
, sun Z

II
𝑠
, planets 

Z
II
𝑝

. The ring of the FPG and SPG are fixed. The power 

is input from the sun in the first-stage, and output from 

carrier in the second-stage. T
I
𝑠
 is the loading torque 

applied to the sun. T
II
𝑠
 is the output torque of carrier. 
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Figure 1. Dynamic model of TPG. 

 

Figure 2. Geometric model of TPG. 



The lumped parameter model with three degrees 

of freedom for the lateral-torsional coupling dynamic 

model can be obtained by Lin and Parker [2]. Different 

from Lin and Parker, in this paper, the relative position 

of center part of planetary gear is given, as shown in 

Figure 3. Here, Figure 3a gives the position relation of 

sun and planet. Figure 3b gives the position relation of 

ring and planet. Figure 3c gives the position relation 

of carrier and planet. 
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Figure 3a.  Sun-Planet meshing. 
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Figure 3b. Ring-Planet meshing. 
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Figure 3c.  Carrier-Planet meshing. 

The internal force of gear is mainly composed of 

three parts: exciting force generated by meshing 

stiffness, static transmission error, sliding friction. mj, 

Ij/r
2
𝑗
 (j=c,r,s,p) is the mass and equivalent moment of 

inertia for each component. After making a detail 

analysis for the components of planetary gear, the 

specific dynamic equation with friction is given as 

follows. 

1) Figure 3a depicts that the sun is subjected to 

the meshing force from the planets and the supporting. 

Equations of sun of the FPG are
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Equations of sun of the SPG are 
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2) Figure 3b depicts that the ring is subjected to the meshing force from the planets and the supporting. Equations of 

ring of the FPG are similar with SPG. Only replace I with II, thus, Equations can be obtained. 
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 3) Figure 3c clearly depicts that carrier is subjected to elastic forces from the elastic deformation of planets 

bearing, and also supported by the bearing. Equations of carrier of FPG and SPG can be written as 
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 4) Planets are subjected to the meshing force from sun and ring. Also, Planets are subjected to the supporting 

force caused by the bearing. Equations of planets of the FPG and SPG are 
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Substituting r xsn n cnx cny cnu n yn      、 、 、 、 、 、  [2] 

into equations (1-6), dynamics equation of discrete 

model of TPG are 
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b m b m
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2
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(7) 

where M is the mass matrix. Km is the meshing 

stiffness matrix. Kb is the bearing stiffness matrix. 

K  is the centripetal stiffness matrix caused by 
c  of 

carrier. q is the generalized displacement vector. Cm is 

the damping matrix. Cb is the supporting matrix. G is 

the Gyro matrix. T is the force column vector. F(t) is 

the internal excitation column vector caused by static 

transmission error. 

MODAL ANALYS IS 

Assume that the meshing stiffness is constant by 

ignoring time terms for free vibration. From equation 

(7), free vibration of this system can be obtained as 
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Equation (8) can be regarded as the eigenvalue 

problem of planetary gears 
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where
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Equation (9) is the inherent characteristic 

equation, which can be rewritten as follows 
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Equation (9) is the characteristic equation of TPG. 

By solving the eigenvalues of this equation, natural 

frequencies and vibration modes can be obtained. 

Meshing stiffness between sun and planets, planets 

and ring are constant. The bearing stiffness of TPG is 

identical. The angle among sun, planet and ring are 

identical. For the meshing between sun and planets, 

planets and ring, the value of integrated curvature 

radius and base circle radius can be assumed to be

sn= 0.2rn r sl r l r  . Structures parameters of TPG are 

given, as shown in Table 1.

Table 1 - Structures parameters of TPG. 

Mass(kg)       8.346cm I , 9.423rm I , 0.79sm I , 0.62pm I , 34.457cm II 25rm II , 3.765sm II , 1.36pm II  

I/r2(kg)     / 8.1055c cI r I I  , / 16.8975r rI r I I  , / 0.3472s sI r I I  , / 0.5714p pI r I I  , / 24.135c cI r II II  , / 47.08r rI r II II

/ 1.55s sI r II II , / 1.12p pI r II II  

Teeth             Z 115r 
I , Z 29s 

I , Z 43p 
I , Z 85r II , Z 29s II , Z 28p 

II  

Angle            
s r 20  I I ,

s r 20  II II  

Modulus       1.75m I , 3m II  

Meshing stiffness (N/m)    89 10sp rpk k  I I , 91 10sp rpk k  II II  

Bearing stiffness (N/m)      810p r sk k k  I I I , 810p r sk k k  II II II  

Torsional stiffness (N/m)   0cu su cu suk k k k   I I II II , 910ru ruk k I II  

Substituting these parameters into equation (9), 

free vibration considering friction is obtained in Table 2 

with the number of first-stage planets NI=4 and the 

number of second stage planets NII=3, NII=4 and NII=5, 

respectively. Table 2 shows that TPG system can be 

divided into three vibration modes: first-stage vibration 

mode (FVM), second-stage vibration mode (SVM) and 

coupled vibration mode (CVM). It shows that with the 

case of μ = 0  and NI=4, the first-stage mode has no 

change but the second-stage and coupled mode change 

with NII increasing from 3 to 5. In other words, the FVM 

11788.2(2) Hz, 9035.4(2) Hz, 8308.0 Hz, 1915.9 Hz, 

771.0(2) Hz, 502.9(2) Hz, 18446.1 Hz, 9424.0 Hz, 

2170.6(2) Hz and 1700.4(2) Hz have no change with the 

number of second-stage planets increasing. Forμ = 0.04, 

the above conclusions are still true. It should be noted 

that (2) denotes that the natural frequency has a double 

root, which is the lateral vibration modes. 

For NI=4 and NII=3, after considering the friction 

effects, the modes of first-stage planetary gear of 

18446.1 Hz、 9424.0 Hz、 11788.2(2) Hz、 9035.4(2) 



Hz、8308.0 Hz reduce. Only the mode of 7903.5(2) Hz 

of the SPG reduces. The rest modal does not change. The 

coupled modal 16478.8Hz 、 9147.1Hz 、 7215.3Hz 、

2008.0Hz、 1707.1Hz also reduce, which indicts that 

friction has great influence on the first stage planetary 

vibration modes and the coupling vibration modes. 

However, it has little influence on the modes of the SPG. 

For NII=4 and NII=5, the above rules are basically the 

same. The friction coupled within meshing stiffness 

matrix causes the reduction of the whole stiffness matrix, 

resulting in the reduction of natural frequencies. 

For NI=NII=4, the modes are studied when friction 

isμ = 0 and μ = 0.04. It shows that first stage lateral 

vibration modal 9035.4(2) Hz, planets vibration modal 

9424.0(2) Hz and torsional vibration modal 18446.1 Hz 

change, which indicates that friction can affect the three 

types modal of first stage planetary gear. Meanwhile, the 

lateral modal 8090.1(2) Hz and planets modal 7404.1 Hz 

of second stage planetary gear change, which indicates 

that friction can affect the two types modal of second 

stage planetary gear, and only affect this two modal. 

Additionally, the couple modal is reduced after 

considering the friction effects. 

As mentioned above, the three kinds of vibration 

modes of planetary gears have changed at a different 

degree. It shows that friction has great influence on 

natural frequencies of planetary gears. Considering 

friction effects, the modal calculated numerically is 

closer to the real value, which gives the natural 

frequencies accurately and has practical engineering 

significance. 

When the planetary gear is drive, gear’s meshing 

force will change, thus, the friction force
Nf F

changes at all times. As an internal force, meshing force 

of gears can be replaced by spring. It can be seen that the 

friction term is coupled in Km. Friction affects the 

meshing stiffness matrix, which is the mechanism of the 

influence of friction on the natural frequency. Because 

of the different sliding speed, meshing gears generate 

the relative sliding friction. Thus, friction only affects 

the meshing stiffness matrix, and it does not affect the 

supporting matrix.

Table 2 - The changing of natural frequency with the case of 𝑁 𝐼 = 4, μ = 0 and 0.04. 

NII=3                                            NII=4                                                  NII=5 

μ = 0        11788.2(2)          9035.4(2)            11788.2(2)          9035.4(2)             11788.2(2)            9035.4(2) 

Modal       2170.6(2)           1700.4(2)             2170.6(2)           1700.4(2)              2170.6(2)             1700.4(2) 

of first      771.0(2)             502.9(2)               771.0(2)             502.9(2)                771.0(2)               502.9(2) 

stage         18446.1              9424.0                 18446.1              9424.0                  18446.1                9424.0 

(Hz)          8308.0                1915.9                 8308.0                1915.9                  8308.0                 1915.9 

μ = 0.04   11769.6±95.8i     9025.2±13.9i        11769.6±95.8i     9025.2±13.9i        11769.6±95.8i     9025.2±13.9i 

Modal       2170.6(2)           1700.4(2)              2170.6(2)           1700.4(2)              2170.6(2)            1700.4(2) 

of first      771.0(2)              502.9(2)               771.0(2)             502.9(2)                771.0(2)              502.9(2) 

stage         18446.1               9424.0                 18446.1              9424.0                  18446.1               9424.0 

(Hz)          8308.0                1915.9                  8308.0               1915.9                  8308.0                 1915.9 

μ = 0        7903.5(2)            6560.5(2)             8090.1(2)           6654.2(2)              8281.4(2)            6735.9(2) 

Modal       1357.9(2)           892.9(2)               1377.1(2)           918.6(2)                1396.8(2)             943.2(2) 

of second  407.9(2)             295.1(2)               420.3(2)             293.3(2)                427.2(2)               291.3(2) 

stage                                                               7404.1   6168.1  1301.5                   7404.1(2)  6168.1(2)  1301.5(2) 

(Hz)         

μ = 0.04   7878.9±22.1i     6559.9±11.9i        8067.0±30.6i      6652.5±13.7i        8259.8±38.8i        6733.1±15.1i 

Modal       1357.5±1.3i      892.6±3.4i           1376.8±1.7i        918.2±4.5i           1396.5±2.2i          942.8±5.6i 

of second  407.9±2.4i        295.1±0.1i           420.3±2.2i          293.2±0.1i           427.2±1.8i           291.2±0.1i 

stage                                                              7376.0   6169.5   1300.9                  7376.0(2)  6169.5(2)  1300.9(2) 

(Hz)          

μ = 0       16478.8    9147.1     7215.3                 17064.9    9147.1     7206.6                    17624.7      9147.1     7210.9 

Coupled   5938.2      2008.0     1707.1                 5859.6      2007.1     1704.0                    5784.2        2006.3     1701.3 
modal      1303.7      1129.2     781.9                    1304.4      1130.0     821.9                      1305.1        1131.5      871.2 

(Hz)         541.9        0                                           588.2         0                                            612.8          0 

μ = 0.04 16462.7    9129.1     7192.1                  17044.6     9129.1    7184.4                    17600.6      9129.1     7189.4 
Coupled   5940.1     2011.5     1700.8                  5861.3       2010.5    1697.8                     5785.9       2009.6     1695.2 

modal      1303.1     1128.6      781.6                    1303.8       1129.4    821.6                      1304.5        1130.8     870.8 

(Hz)         541.8      0                                      588.2        0                                       612.8        0 

Ignoring the time terms of meshing stiffness and 

regarding the mass matrix and stiffness matrix as 

constant matrix, the system of planetary gear is linear. 

When the system is subject to an internal constant force, 

the natural frequency can be obtained from the 

frequency response curve. Figure 4 shows the frequency 

response curve of the torsional vibration of sun, and it 

indicates that 18446.1Hz is the natural frequency of 



torsional vibration of FPG. 541.9Hz, 1129.2 Hz, 1707.1 

Hz, 2008.0 Hz and 9147.1 Hz is the natural frequency of 

coupled vibration of TPG. Therefore, it concludes that 

there is coupling modal in the torsional vibration modes, 

which show that there is strong coupling between the 

FPG and SPG, which is ‘mutual coupling’. 

Figure 5 is the lateral vibration modal of planets of 

FPG. 18446.1Hz is the torsional vibration mode of FPG. 

502.9Hz and 2170.6Hz are the lateral vibration modal of 

FPG. 781.9Hz, 1707.1Hz, 2008Hz and 9147.1Hz are the 

coupled modes of TPG. It indicates that for the vibration 

of planets, there are lateral vibration modal, torsional 

vibration modal and the coupled modal. Thus, it shows 

that there is strong lateral-torsional coupling of the FPG, 

which is ‘self-coupling’. Also, there is strong coupling 

between the FPG and the SPG, which is the ‘mutual 

coupling’. 

         

Figure 4. Lateral vibration response of planets.                        Figure 5. Torsional vibration response of sun. 

CONCLUSIONS 

This paper focuses on the free vibration of the two-

stage planetary gear. The changing of natural frequency 

of two-stage planetary gear are studied with the case of 

NI=4 and NII=3,4,5. The effect of friction on natural 

frequency is analyzed. Additionally, the coupling 

phenomenon is also demonstrated. The research shows 

that 

1) The two-stage planetary gear can be classified 

into three modes: the first-stage vibration modes, the 

second-stage vibration modes and the coupled vibration 

modes. When the number of the planets is determined, 

the first-stage vibration modes will not change with the 

increasing of the second-stage planets. 

2) There exists strong lateral-torsional coupling 

relationship for the component of first stage planetary 

gear, namely, self-coupling. Also, there exists coupling 

relationship between the first-stage and the second-stage 

planetary gear, namely, mutual-coupling. 

3) As an internal force, friction dissipation the 

system energy and play a role like damping effect, which 

is the reason of the appearing of complex mode. The 

friction is coupled into the stiffness matrix, which makes 

the whole stiffness asymmetric. Thus, the gear system 

does not appear two identical roots. 
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