
 
 

 
Simulation and Detection of Intermittent Sounds in Wind Noise 
Tests on Automobiles 
 
 
Daniel Carra) 
Patricia Daviesb) 

Ray W. Herrick Laboratories 
177 S. Russell Street 
Purdue University 
West Lafayette IN  47907-2031 
 

ABSTRACT 
Customer complaints about wind noise in cars have led to a re-examination of the metrics 
used in evaluations of wind noise.  A refinement to the loudness-based metric has been 
proposed and a validation study was conducted to determine how well the model worked in 
predicting the quality of wind noise in new cars.  As part of this validation process a new 
error state was identified.  Error states are the presence of noise characteristics that would 
make a vehicle unacceptable, and thus indicate problems that must be addressed.  An 
example of this is whistling noise.  In the validation study another sound characteristic, which 
is an intermittent high-frequency repetitive noise, was identified as a potential error state.  
In this paper, a methodology to simulate this intermittent noise is described, so that the 
threshold level for detection and just noticeable differences of this error state noise could be 
explored.  The simulation method involves generating a signal of intermittent filtered white 
noise and adding it to a user-rated acceptable wind-noise recording.  Both the intermittent 
noise and the original recording are filtered so that the resulting synthesized sound has a 
similar spectral shape to the recording with the error-state noise.   
 

1 INTRODUCTION 
 
 Following successes in reducing the noise inside automobiles coming from engines, 
powertrains, and tires, the attention of acousticians has turned more towards noise from airflow 
around the vehicle1.  Attempts to predict people’s responses to wind noise have resulted in models 
based on Loudness,2,3 which, although a very useful predictor, is not satisfactory in all cases.  The 
research described in this paper is part of the continuing effort to identify additional sound quality 
metrics that can be used to develop more effective models of vehicle wind noise performance.   
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 In two previous listening studies, the authors developed models of acceptability of stationary 
wind noise in automobiles.  The first study4 was conducted to examine the usefulness of speech 
intelligibility indices as additional predictors (an idea of some interest in other studies5,6,7).  The 
conclusion of this study was that a linear model of acceptability containing Zwicker Loudness 
exceeded 5% of the time (N5) and von Bismarck Sharpness exceeded 5% of the time (S5) fit 
subjects’ average ratings significantly better (R2 = 0.980) than did models containing N5 alone (R2 
= 0.937), or N5 and a speech intelligibility metric (such as Articulation Index).  A second study8 
was performed to more thoroughly examine Sharpness effects over a smaller range of Loudness, 
and the conclusion of the first study was reinforced: linear models including N5 and S5 showed 
strong fit of R2 ≥ 0.951, as opposed to R2 ≤ 0.755 for linear models containing N5 alone.   
 The goal of the experiments described in this paper is to quantify a high-frequency aspiration 
noise artifact observed in a small number of sounds.  That a model from the authors’ second study 
does not accurately predict the acceptability of this sound is not a significant detriment to the 
model, if the artifact itself is seen as an error-state.  However, it is still desirable to have some 
knowledge of how such artifacts are generated and how they affect noise measures, so that a 
method for detection of them can be constructed.  This artifact may be described as “weakly” 
periodic, but does not create large non-stationary effects such as those arising from acceleration9, 
buffeting, or gusting noise3,10,11.   
 
2 INITIAL IDENTIFICATION OF ERROR-STATE SOUND 
 
 The error-state aspiration noise was originally identified in one sound, which was not included 
in the authors’ previous tests.  The average acceptability rating given by listeners in a pilot test 
was lower than that predicted by the authors’ model in their second study8.  This disparity did not 
appear to be related to differences in Roughness or Fluctuation Strength.  However, the sound 
containing aspiration noise did have some distinctive features in its power spectral density: two 
sharp spectral peaks at 1850 and 1950 Hz, and generally higher levels above 7000 Hz.   

 
 
Fig. 1 –  Frequency response function magnitude relating the spectrum of the error-state sound to 

the spectrum of the highest-rated sound in the pilot test.  
 
3 DESCRIPTION OF ERROR-STATE TEST 
 
 To more thoroughly examine people’s responses to these sounds, a test was performed in the 
Sound Quality Booth at Herrick Laboratories, Purdue University (Institutional Review Board 
protocol #1511016807).  The Sound Quality Booth is a double-walled sound chamber with a set 



of insert earphones inside, and a desktop computer and amplifier outside.  Prompts were displayed 
over a second computer screen inside the booth. 
 
2.1 Sounds and Playback 
 
 Ten 4-second-long sounds were used in the experiment.  These sounds were generated from 
six recordings made in six different cars in a wind tunnel.  The low-frequency energy of these 
sounds was equalized by low-pass filtering one sound at 250 Hz and substituting the resulting low-
frequency signal into the other five sounds.  An additional copy of the sound containing the 
aspiration noise was included with equalization below 500 Hz.   
 Three more sounds were made by modifying the spectral shape of the sound most highly rated 
in the pilot test (or “good” sound) and the error-state sound (or “bad” sound).  This was done using 
finite-impulse-response (FIR) filters generated from the power spectral densities of these two 
sounds.  A “good-to-bad” sound was made by filtering the good sound to have the spectral shape 
of the bad sound (the frequency response magnitude of this filter is shown in Fig. 1); a “bad-to-
good” sound was made by filtering the bad sound to have the spectral shape of the good sound; 
and a “bad-to-worse” sound was made by filtering the bad sound to emphasize rather than reduce 
its distinctive spectral characteristics.   
 The test was conducted in two parts.  Part A was a Paired Comparison preference test 
containing 10 sounds (90 pairs of sounds total), and Part B was a Likert Scale acceptability test 
containing 10 sounds presented three times each (30 ratings total).   
 
2.2 Test Procedure 
 
 Each subject first read an outline of the experiment, signed the consent form, and filled out a 
questionnaire.  A hearing screening was administered, and subjects who successfully completed it 
were given the test.  Part A was given first, which included a short familiarization component 
where subjects just listened to sounds and some practice at selecting sounds before the completing 
the full paired comparison test.  Following an optional break, Part B was given, which also 
including a rating practice component.  After completion of Part B, the subject was then asked for 
comments, given a second hearing screening, and compensated $10. 
 

2.3 Signal Rating Analysis 
 
 In Part A, subjects pressed one of two buttons in response to the question: Which sound do 
you prefer?, and the estimated probabilities of choosing one sound over another were converted to 
Bradley-Terry-Luce (BTL) acceptance values.  In Part B, subjects rated the acceptability of sounds 
on a scale with five major increments labeled “Not at all”, “Slightly”, “Moderately”, “Very”, and 
“Extremely”.  The endpoints of the line extended slightly beyond the outer tick marks to help 
prevent saturation of results.  The scale was mapped to a numerical range, so that 1 and 9 are the 
endpoints of the line, and 2 and 8 are the outer tick marks.   
 

2.4 Subjects 
 
 The results presented are for a group of 47 subjects, consisting of 35 female subjects aged 18-
54, and 12 male subjects aged 18-42 (excluding one subject who asked to withhold his age).  The 



average of the subjects’ ages was 25.7 years and a median of 23 years.  Each subject had hearing 
thresholds at or below 20 dB in each ear in all octave bands from 125 to 8000 Hz.   
 
4 RESULTS FROM ERROR-STATE TEST 
 
 Subjects’ consistency with the group was checked by calculating the correlations between 
each subject’s ratings and the average of everyone else’s ratings.  Three subjects’ data was partially 
dropped, resulting in a subject group of 46 for Part A and 45 for Part B.   
 Average acceptability ratings are plotted in Figure 2.  The trends in the responses in the Likert 
Scale and Paired Comparison are very similar (the BTL values and the average of the acceptance 
ratings are correlated with R2 = 0.962).  Statistically significant differences are noted between the 
good and bad-to-good sounds, and between the bad and good-to-bad sounds.  The bad-to-worse 
sound is the lowest-rated, as expected.  The difference between good-to-bad and bad is greater 
than the difference between bad-to-good and good; so average spectral differences may not entirely 
account for the unacceptability of the aspiration noise.  The filtering procedure may amplify or 
attenuate aspiration components already present in the sound, but it does not produce aspiration-
like noise by itself.   

 
Fig. 2 – Average acceptability ratings from Part B, with standard deviation of the estimated mean.  

Gridlines are located at the numerical values of the increments on the scale: 3.5 - slightly 
acceptable, 5.0 - moderately acceptable, 6.5 - very acceptable.   

 
5 METRICS FROM ERROR-STATE TEST 
 
 Rather than fitting new acceptability models (which would not be very robust with only ten 
sounds), the predictions of a linear acceptability model from the authors’ previous test8 based on 
N5 and S5 were examined.  The results are shown in Figure 3.  The R2 value is still high (0.795), 
although the four sounds containing aspiration noise appear to be on a different trend-line than the 
rest of the sounds (see magenta and green trend lines in Figure 3).  Plotting the residuals (average 
acceptability minus predicted value) against Roughness exceeded 5% of the time (R5) or 
Fluctuation Strength exceeded 5% of the time (FS5) does not reveal any obvious trends.  Thus, 
while subjects’ responses change with varying levels of aspiration noise, this change does not 
create any discernable trends in the values of metrics examined so far.   
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Fig. 3 – Average acceptability ratings plotted against predicted acceptability from a model 

containing N5 and S5.  Trend lines: for sounds without aspiration noise (green); for 
sounds with aspiration noise (magenta).  One-to-one line in black. 

 
5 ASPIRATION NOISE SIMULATION METHOD 
 
 Because metric trends for aspiration noise were not identified in the listening study, an 
aspiration-noise simulation technique was developed.  This approach 1) allows for easy 
manipulation of parameters, which would be useful in developing sounds for further testing, and 
2) enables generation of louder aspiration-like noises than what is normally heard in cars.  If the 
loudness range of the aspiration-like noises is greater, then trends in other metrics may be more 
easily identifiable.   
 The idea of this simulation method is to take the “good” sound from the test discussed above, 
and add components to give it the same spectral shape as the “bad” sound.  The “good-to-bad” 
sound from the test represents a limiting case in this scheme, where the added components were 
assumed to be entirely stationary.  In the proposed simulation method, part of the good-to-bad 
spectral differences can be taken up by stationary noise, and part can be taken up by intermittent 
noise.  This allows the authors to adjust the relative strength of the aspiration component.   
 The procedure begins with the good signal, represented by 𝑔𝑔(𝑡𝑡).  Applying the good-to-bad 
filter from the listening test returns a sound with the same average spectral shape as the bad sound:  
 
 𝑏𝑏(𝑡𝑡) = ℎ𝐺𝐺𝐺𝐺(𝑡𝑡) ∗ 𝑔𝑔(𝑡𝑡), (1) 

 
where * denotes convolution.  The differences between 𝑔𝑔(𝑡𝑡) and 𝑏𝑏(𝑡𝑡) are split up into two 
components: 
 
 𝑐𝑐(𝑡𝑡) = 𝛾𝛾[𝑏𝑏(𝑡𝑡) − 𝑔𝑔(𝑡𝑡)], (2) 

 
 𝑑𝑑(𝑡𝑡) = (1 − 𝛾𝛾)[𝑏𝑏(𝑡𝑡) − 𝑔𝑔(𝑡𝑡)]. (3) 

 
where 𝛾𝛾 is input by the user, and may vary between 0 and 1.  𝑐𝑐(𝑡𝑡) is retained as a stationary 
component, and an intermittent sound is generated to have the same average power spectral density 
as 𝑑𝑑(𝑡𝑡).  In the case where 𝑑𝑑(𝑡𝑡) is so quiet that an intermittent noise with the same spectral shape 
does not have a recognizable effect on the metrics, Equation (3) is modified by including an 



additional amplification term 𝛽𝛽 in the multiplier, so that the user can generate arbitrarily loud 
aspiration-like noises:  
 𝑑𝑑(𝑡𝑡) = (1 − 𝛾𝛾 + 𝛽𝛽)[𝑏𝑏(𝑡𝑡) − 𝑔𝑔(𝑡𝑡)]. (3a) 

 
To generate the aspiration-like noise, a white noise signal 𝑤𝑤(𝑡𝑡) is produced using a random number 
generator.  It is then filtered to have the same spectral shape as 𝑑𝑑(𝑡𝑡): 
 
 𝑓𝑓(𝑡𝑡) = ℎ𝑊𝑊𝑊𝑊(𝑡𝑡) ∗ 𝑤𝑤(𝑡𝑡), (4) 

 
where the frequency response of the zero-phase filter ℎ𝑊𝑊𝑊𝑊(𝑡𝑡) is calculated from the power spectral 
densities of 𝑑𝑑(𝑡𝑡) and 𝑤𝑤(𝑡𝑡):  
 
 

𝐻𝐻𝑊𝑊𝑊𝑊(𝑓𝑓) = �
𝑆𝑆𝑑𝑑𝑑𝑑(𝑓𝑓)
𝑆𝑆𝑤𝑤𝑤𝑤(𝑓𝑓)  . (5) 

 
An envelope 𝑝𝑝(𝑡𝑡) is now generated, consisting of short-duration windows where p(t) is positive 
separated by times where 𝑝𝑝(𝑡𝑡) is zero.  The separation between consecutive windows defines the 
base periodicity of the envelope, which is typically set to be around 12 Hz. The envelope 
generation may be adjusted by changing the general shape of the window, adjusting the height of 
the windows and by changing the timing between consecutive windows.  Durations between 
consecutive windows can be randomly perturbed about the base period, and the height of the 
windows can be randomly perturbed about the default peak value of 1 so that the strength of the 
aspiration noise is not entirely steady.   Both the timing and amplitude random perturbations are 
approximately Gaussian distributed, with standard deviation values input by the user.  If the user 
enters a standard deviation value greater than one-third of the base period or of the default window 
height, the program automatically aborts without generating the simulated sound, and returns an 
error message.   
 
 𝑓𝑓(𝑡𝑡) is multiplied by this envelope and scaled to produce an intermittent signal with the same 
spectral shape as 𝑑𝑑(𝑡𝑡): 
 
 

𝑒𝑒(𝑡𝑡) = 𝑓𝑓(𝑡𝑡) ∙ 𝑝𝑝(𝑡𝑡) ∙
1

�  𝑝𝑝2(𝑡𝑡)�������  
 . (6) 

 
The synthesized aspiration noise, the stationary component, and the base sound 𝑔𝑔(𝑡𝑡) are combined 
to make the simulated sound: 
 
 𝑦𝑦(𝑡𝑡) = 𝑔𝑔(𝑡𝑡) + 𝑐𝑐(𝑡𝑡) + 𝑒𝑒(𝑡𝑡). (7) 

 
6 METRIC TRENDS IN SIMULATED SOUNDS 
 
 Metric trends were examined both for sounds having aspiration noise with an exact period of 
12 Hz (the approximate periodicity of the original aspiration noise), and for sounds with the 
aspiration-noise period perturbations generated with the Gaussian distribution standard deviation 
set to 0.01 seconds.  The aspiration-noise amplitude was not randomly varied.  The window 



durations were half the time between consecutive windows.  The metric trends reported in this 
paper are for simulated sounds that were high-pass filtered so that the effects of the higher-
frequency aspiration artifacts would not be masked by low-frequency energy in the signal.  The 
filter cut-off frequency was set to 1000 Hz and the roll-off rate was 36 dB/Octave.   
 When the stationary portion of the sound is held constant and the synthesized aspiration 
artifact is increased (i.e. 𝛾𝛾 is held constant and 𝛽𝛽 is increased), metric statistics such as N5, S5, R5, 
and kurtosis of pressure increase.  This behavior is expected.  It is interesting to note that while N5 
increases with increasing 𝛽𝛽, kurtosis of Zwicker Loudness decreases.  On the other hand, when the 
proportion of stationary to aspiration noise is varied with no extra non-stationary amplification 
(i.e. 𝛾𝛾 is varied and 𝛽𝛽 = 0), the N5, R5, and kurtosis trends are generally weaker and often not 
noticeable, while S5 decreases and Speech Intelligibility Index exceeded 5% of the time (SII5) 
increases with increasing proportions of aspiration noise (i.e. with decreasing 𝛾𝛾).  In all cases, the 
differences in Fluctuation Strength values (and the values themselves) are too small to be of much 
use in flagging error-state sounds.   

 

 
 
Fig. 4 – Metric trends for high-pass filtered sounds with perturbed-periodicity aspiration, (a) as a 

function of γ, (b) as a function of 𝛽𝛽 the amplification of the non-stationary component in 
the simulation.  Colors: N5, S5, Kurtosis of pressure, Kurtosis of Loudness, SII5.   

 
 Another potential indicator of aspiration content may be found by examining spectra of the 
Zwicker Loudness time histories (see Figure 5).  A spectral feature appears above the spectrum 
noise floor at the fundamental frequency of the aspiration artifact (12 Hz).  This peak occurs both 
when the aspiration periodicity is constant and when it is randomly perturbed.  In the case where 
periodicity is not perturbed, higher harmonics may also be visible in the spectrum.  It is noted that 
the peak at 12 Hz is almost invisible at 𝛾𝛾 = 0.5.  If the Loudness time history of the separate 
aspiration component is Fourier transformed, the peak is still visible at higher 𝛾𝛾 (as expected), and 
a smaller peak at the first harmonic is also visible.    

 
 



  
 
Fig. 5 – The magnitude of the Fourier Transform of the Zwicker Loudness time histories for high-

pass filtered sounds with perturbed periodicity aspiration. (a) Effect of varying the ratio 
of stationary to aspiration components (𝛾𝛾), with  𝛽𝛽 = 0. (b) Effect of varying aspiration 
component amplification 𝛽𝛽, with constant 𝛾𝛾 = 0.   

 
7 CONCLUSIONS 
 
 Subjects’ responses to wind noise that contains aspiration noise is not predicted by a currently 
used model of wind noise acceptance. The acceptance model used contains a loudness and a 
sharpness term, and it works well with most wind noise sounds.  Differences in model predictions 
and the average of subjects’ response increase with increased levels of aspiration noise.  Most 
sound and sound quality metrics examined are insensitive to the presence of aspiration noise in the 
signal.  High pass filtering the sounds helped to reveal some differences between sounds with and 
without aspiration.  Aspiration noise was modeled as high frequency amplitude modulated random 
noise.   Examination of simulated aspiration-noise sounds has led to the identification of some 
promising methods that may be useful in flagging the presence of aspiration noise as an error-state.  
Future steps include examining how well the methods work with other recorded sounds containing 
aspiration noise.  The aspiration noise simulation method developed will be useful when running 
listening studies to determine absolute thresholds and just-noticeable differences for aspiration-
like noise artifacts.   
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